

SHEFFIELD METALS FEETHER TEST REPORT

SCOPE OF WORK

UL 580 UPLIFT RESISTANCE TESTING OF 0.029" ALUMINUM 1.5" MECHANICAL SEAM ROOF PANELS

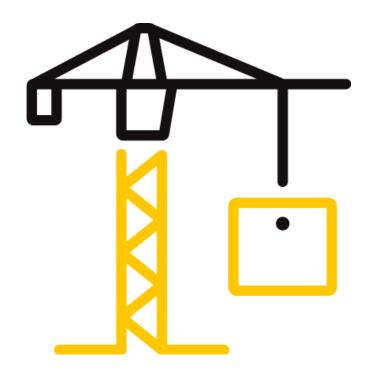
REPORT NUMBER

L3734.01-450-18 R1

TEST DATES

09/16/20 - 10/07/20

ISSUE DATE REVISED DATE


12/03/20 02/01/21

PAGES

22

DOCUMENT CONTROL NUMBER

RT-R-AMER-Test-2958 (03/11/20) © 2017 INTERTEK

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

REPORT ISSUED TO

SHEFFIELD METALS

5467 Evergreen Parkway Sheffield Village, OH 44054

SECTION 1

SCOPE

Intertek Building & Construction (B&C) was contracted by Sheffield Metals, Sheffield Village, OH to perform testing in accordance with UL 580, Standard for Safety, Tests for Uplift Resistance of Roof Assemblies, on their 0.029" Aluminum 1.5" Mechanical Seam Roof Panels. Results obtained are tested values and were secured by using the designated testmethods. Testing was conducted at Intertek B&C test facility in West Palm Beach, FL.

This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. Intertek B&C will service this report for the entire test record retention period. The test record retention period ends four years after the test date. Test records, such as detailed drawings, datasheets, representative samples of test specimens, or other pertinent project documentation, will be retained for the entire test record retention period.

SECTION 2

SUMMARY OF TEST RESULTS

Product Type: Metal Roof Panels Series/Model: SMI 1.5 MS Aluminum

Specimen 1 - Ultimate Test Load Achieved: -187 psf Specimen 2 - Ultimate Test Load Achieved: -202 psf Specimen 3 - Ultimate Test Load Achieved: -232 psf WALLING ONAL

For INTERTEK B&C:

COMPLETED BY: TITLE: **SIGNATURE:** 02/01/21 DATE:

Melissa Nuttall

Technician Team Leader -Product

SIGNATURE: DATE:

TITLE:

REVIEWED BY:

Vinu J. Abraham, P.E. Vice President - Global **Business Development & Regional Operations**

2021.02.01 16:11:48 -05'00'

MMN:awr

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

SECTION 3

TEST METHODS

The specimens were evaluated in accordance with the following:

UL 580, Standard for Safety, Tests for Uplift Resistance of Roof Assemblies, Underwriters Laboratories, Inc. (Fifth Edition November 2, 2006, revised through July 9, 2009).

The specimens were evaluated in general accordance with the following:

UL 1897, *Uplift Tests for Roof Covering Systems*, Underwriters Laboratories, Inc. (Seventh Edition September 23, 2015).

SECTION 4

MATERIAL SOURCE/INSTALLATION

Test specimens were provided by the client. Representative samples of the test specimen(s) will be retained by Intertek B&C for a minimum of four years from the test completion date.

Installation of the tested product was performed by the client.

SECTION 5

EQUIPMENT

Cycling and Static Load Mechanism: Computer controlled centrifugal blowers with electronic pressure measuring device.

Deflection Measuring Device: Linear Transducers

SECTION 6

LIST OF OFFICIAL OBSERVERS

NAME	COMPANY
Melissa Nuttall	Intertek B&C
Veron Wickham	Intertek B&C

Version: 03/11/20 Page 3 of 22 RT-R-AMER-Test-2958

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

SECTION 7

TEST PROCEDURE

This test evaluates the comparative resistance of roof assemblies to positive and negative pressures by simulating the effects of wind gusts by use of oscillating exterior pressure and constant interior pressures. Three assembly were tested per UL 580 at each class rating. (Reference Chart No. 1 for test pressures and load durations.) The measurements were taken via a transit and steel scales mounted to the roof panels. The measurements were taken via linear transducers.

	İ				
		NEGATIVE PRESSURE		POSITIVE PRESSURE	
		POUNDS PER	INCHES OF	POUNDS PER	INCHES OF
TEST	DURATION	SQUARE FOOT	WATER	SQUARE FOOT	WATER
PHASE	minutes	psf (kPa)	inches (mm)	psf (kPa)	inches (mm)
Class 30					
1	5	16.2 (0.79)	3.1 (79)	0.0 (0.00)	0.0 (0)
2	5	16.2 (0.79)	3.1 (79)	13.8 (0.66)	2.7 (69)
3	60	8.1 - 27.7 (0.39 - 1.33)	1.5 - 5.3 (38 - 135)	13.8 (0.66)	2.7 (69)
4	5	24.2 (1.16)	4.7 (119)	0.0 (0.00)	0.0 (0)
5	5	24,2 (1.16)	4.7 (119)	20.8 (1.00)	4.0 (102)
Class 60		O.Al.			
1	5	32.3 (1.55)	6.2 (157)	0.0 (0.00)	0.0 (0)
2	5 CHR.	32.3 (1.55)	6.2 (157)	27.7 (1.33)	5.3 (135)
3	60/0 Br	16.2 - 55.4 (0.79 - 2.66)	3.1 - 10.7 (79 - 272)	27.7 (1.33)	5.3 (135)
4	3	40.4 (1.94)	7.8 (198)	0.0 (0.00)	0.0 (0)
5 (R)	5	40.4 (1.94)	7.8 (198)	34.6 (1.66)	6.7 (170)
Class 90	maximum cor	nbined uplift pressu	re of 105 psf)		
A CONTRACTOR OF THE PROPERTY O	5	48.5 (2.33)	9.3 (236)	0.0 (0.00)	0.0 (0)
2	5	48.5 (2.33)	9.3 (236)	41.5 (1.99)	8.0 (203)
3	60	24.2 - 48.5 (1.16 - 2.33)	4.7 - 9.3 (119 - 236)	41.5 (1.99)	8.0 (203)
4	5	56.5 (2.71)	10.9 (277)	0.0 (0.00)	0.0 (0)
5	5	56.5 (2.71)	10.9 (277)	48.5 (2.33)	9.3 (236)

Chart No. 1
UL 580 Load Table Test Pressures

Version: 03/11/20 Page 4 of 22 RT-R-AMER-Test-2958

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

SECTION 8

TEST SPECIMEN DESCRIPTION

Product Type: Metal Roof Panels Series/Model: SMI 1.5 MS Aluminum

Product Sizes:

All Specimens:

OVERALL AREA:	WIDTH		LENGTH	
9.3 m ² (100.0 ft ²)	millimeters	inches	millimeters	inches
Overall Size	3048	120	3048	120
Panel Coverage	406	16	3048	120

The following descriptions apply to all specimens.

Test Deck Constructions

The 10' 0" wide by 10' 0" long by 1' 3 deep test frame was fabricated from C15 by 33.9 steel channels. The test frame utilized sixioists constructed from Southern Yellow Pine 2 x 12 lumber located on two sides of the test frame and spaced 24" on center. The joists were secured to the test frame using two 1/2" x 3 Yong bolts with washers and nuts through an 8" long, 2" by 4" by 1/8" steel angle with pre-dilled fastener locations. The steel angles were welded to the test frame 24" on center. Southern Yellow Pine 2 x 12 lumber was utilized as cross members. The cross members were located under the side seams of the plywood (approximately 48" and 96" from the edge of the test ring) and secured to the joists using two #8 X 3" long Torx flat head screws at each end. 1/2" (15/32" min) thick 4-ply plywood sheathing was utilized on the top of the test deg The plywood was secured using 8d coated ring shank nails spaced 6" on center.

Version: 03/11/20 Page 5 of 22 RT-R-AMER-Test-2958

Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Specimen #1 Roof System:

Specimen #1 Roof Sy		WONSEN FROM THE SMITECHNICAL DEPT
COMPONENTS	DETAILS	ATTACHMENT METHOD
30# Asphalt saturated organic felt paper	A single layer was used with a 4" overlap between adjacent sheets.	0.120" x 11/4" galvanized annular ring shank roofing nails with 32 Ga tin caps spaced 6" on center at the perimeter and overlaps, with two intermediate rows spaced 12" on center.
2-Piece Clip	The clip was made up of a 6" long x 2-1/8" wide x 7/8" high base constructed from 18 Ga steel and a 1-3/4" long x 1/2" wide x 1 1/2" high top constructed from 24 Ga steel.	The clips were spaced 16" on center and attached using a pair of #10 x 1" pancake head fasteners.
1.5" Mechanical Seam Panels	The panels were constructed from 0.029" aluminum and had a 16" coverage width. Seven full and two partial width panels were tested.	The male leg of the panels were secured using clips spaced 16" on center. The female leg of the panels was placed over the male leg of the panel and mechanically seamed 180°. The same fasteners were used at the perimeter of the panels spaced 2" on center.

Version: 03/11/20 Page 6 of 22 RT-R-AMER-Test-2958

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

Specimen #2 Roof System:

Specimen #2 Rooms	ystein.	
COMPONENTS	DETAILS	ATTACHMENT METHOD
30# Asphalt saturated organic felt paper	A single layer was used with a 4" overlap between adjacent sheets.	0.120" x 1-1/4" galvanized annular ring shank roofing nails with 32 Ga tin caps spaced 6" on center at the perimeter and overlaps, with two intermediate rows spaced 12" on center.
2-Piece Clip	The clip was made up of a 6" long x 2-1/8" wide x 7/8" high base constructed from 18 Ga steel and a 1-3/4" long x 1/2" wide x 1-1/2" high top constructed from 24 Ga steel.	The clips were spaced 16" on center and attached using a pair of #10 x 1" pancake head fasteners.
1.5" Mechanical Seam Panels	The panels were constructed from 0.029" aluminum and had a 16" coverage width. Seven full and two partial width panels were tested.	The male leg of the panels were secured using clips spaced 16" on center. The female leg of the panels was placed over the male leg of the panel and mechanically seamed 180°. The same fasteners were used at the perimeter of the panels spaced 2" on center.

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

Specimen #3 Roof System:

specimen as Root sy		
COMPONENTS	DETAILS	ATTACHMENT METHOD
Moisture Barrier	A single layer was used with a 4" overlap between adjacent sheets.	Self-adhered.
2-Piece Clip	The clip was made up of a 6" long x 2-1/8" wide x 7/8" high base constructed from 18 Ga steel and a 1-3/4" long x 1/2" wide x 1-1/2" high top constructed from 24 Ga steel.	The clips were spaced 8" on center and attached using a pair of #10 x 1" pancake head fasteners.
1.5" Mechanical Seam Panels	The panels were constructed from 0.029" aluminum and had a 16" coverage width. Seven full and two partial width panels were tested.	The male leg of the panels were secured using clips spaced 8" on center. The female leg of the panels was placed over the male leg of the panel and mechanically seamed 180°. The same fasteners were used at the perimeter of the panels spaced 2" on center.

Version: 03/11/20 Page 8 of 22 RT-R-AMER-Test-2958

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

SECTION 9 TEST RESULTS			JANUAL OF		
The temperature during testing was 84°F - 87°F. The results are tabulated as follows.					
Test Specimen #1	1	" CM2"			
TEST TITLE	OBSERVATIONS	DEFLECTION MEASUREMENTS	RESULTS		
TEST TITLE Class 30, Phases 1-5	OBSERVATIONS No visible damage to system		RESULTS PASSED		
		MEASUREMENTS			
Class 30, Phases 1-5	No visible damage to system	MEASUREMENTS Reference Table No. 1	PASSED		
Class 30, Phases 1-5 Class 60, Phases 1-5	No visible damage to system No visible damage to system	MEASUREMENTS Reference Table No. 1 Reference Table No. 1	PASSED PASSED		

Test Specimen #2

of C.		DEFLECTION	
TEST TITLE	OBSERVATIONS	MEASUREMENTS	RESULTS
Class 30, Phases 1-5	No visible damage to system	Reference Table No. 3	PASSED
Class 60, Phases 1-5	No visible damage to system	Reference Table No. 3	PASSED
Class 90, Phases 1-5	No visible damage to system	Reference Table No. 3	PASSED
Supplemental Loads -112 psf to -202 psf	No visible damage to system	Reference Table No. 4	PASSED
Supplemental Loads -217 psf	Seam Buckled	Reference Table No. 4	FAILED

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

Test Specimen #3

rest specimen 43			
TEST TITLE	OBSERVATIONS	DEFLECTION MEASUREMENTS	RESULTS
Class 30, Phases 1-5	No visible damage to system	Reference Table No. 5	PASSED
Class 60, Phases 1-5	No visible damage to system	Reference Table No. 5	PASSED
Class 90, Phases 1-5	No visible damage to system	Reference Table No.	PASSED
Supplemental Loads -112 psf to -232 psf	No visible damage to system	Reference Table No. 6	PASSED
Supplemental Loads -247 psf	Seam Buckled	Reference Table No. 6	FAILED

Notes:

Reference Chart No. 1 for test pressures and load durations.

Reference Sketch No. 1 for location of deflection measurement devices.

A loose fitting, pleated 4-mil plastic film was utilized to assist in obtaining uniform pressure on the roof system. The plastic film was located between the moisture barrier and the roof panels to facilitate testing. In our opinion, this did not influence test results.

Supplemental loads per UL 1897 started at -112 psf total load.

SECTION 10

TENSILE TEST RESULTS

Tensile tests were conducted on one coupon. The test specimens were evaluated in accordance with the most recent revision of ASTM B557, Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products. The tensile coupons were machined from the metal members to the dimensions of the sheet-type 0.5" wide specimen given in Figure 6 of ASTM B557. Elongation was measured after fracture.

Test Method:	ASTM B557			
Orientation:	Longitudinal			
Specimen No.	Yield Strength @ 0.2% Offset	Tensile Strength	Elongation in 2" (%)	
NO.	(ksi)	(ksi)	(70)	

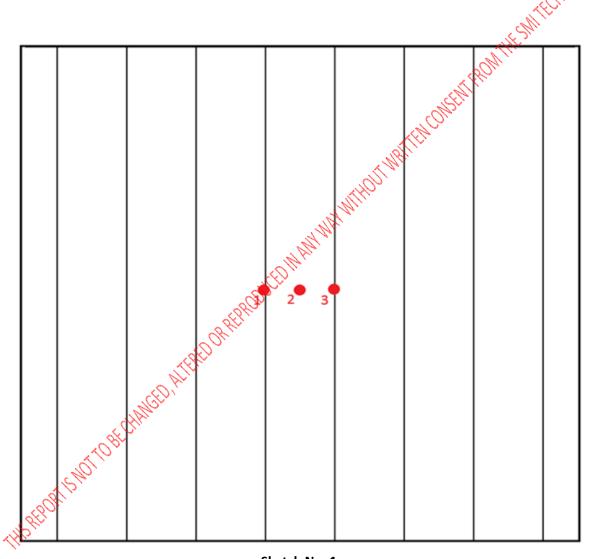
> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

THE REPORT HARD OF THE
Version: 03/11/20 Page 11 of 22 RT-R-AMER-Test-2958

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building


TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

SECTION 12

SKETCH(ES)

Sketch No. 1
Deflection Measurement Device Locations

Version: 03/11/20 Page 12 of 22 RT-R-AMER-Test-2958

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

SECTION 13

TABLES

	ſ	r		1
		DEFLECTION MEASUREMENTS (inches)		
		INDICATOR		M
CLASS	PHASE	#1	#2	#3
	1	0.28	1.14	0.32
	2	0.34	1.49	0.43
	3 Minimum	0.37	1.53	0.44
30	3 Maximum	0.41	1.71	0.51
	4	0.35	1.46	0.42
	5	0.44	1.82	0.55
	Final (0.0 psf)	0.22	0.48	0.20
	1	0.40	1.66	1.49
	2	0.51	2.08	0.65
	3 Minimum	0.53	2.13	0.66
60	3 Maximum	0.62	2.36	0.79
	4	0.48	1.99	0.61
	5 OR 1	0.63	2.39	0.80
	Final (0.0 psf)	0.25	0.68	0.24
	1 1	0.52	2.09	0.66
	2,(31)	0.73	2.64	0.94
	3 Minimum	0.70	2.56	0.88
90	3 Maximum	0.74	2.66	0.95
2/0.	4	0.60	2.32	0.77
12/10.	5	0.81	2.83	1.05
1	Final (0.0 psf)	0.28	0.90	0.28

Table No. 1
Deflection Measurements – Test Specimen #1

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

VACUUM	UPLIFT	LOAD	SUPPLEMENTAL DEFLECTION MEASUREMENTS (inches) INDICATOR		· EROW HE SAM
(psf)	(psf)	(psf)	#1	#2	#3
-63.5	-48.5	-112.0	0.85	2.90	1.09
-78.5	-48.5	-127.0	0.91	3.05	1.18
-93.5	-48.5	-142.0	1.00	3,23	1.29
-108.5	-48.5	-157.0*	0.83	2.34	1.13
-123.5	-48.5	-172.0	0.96	2.57	1.30
-138.5	-48.5	-187.0	1.06	2.80	1.47
-153.5	-48.5	-202.0	et la.	Failed	

Table No. 2

*Gauge *G Supplemental Deflection Measurements – Test Specimen #1

*Gauges zeroed before load

Version: 03/11/20 Page 14 of 22 RT-R-AMER-Test-2958

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

		DEEL ECTION	MENSIIDEMENIT	S (inches)	
		DEFLECTION MEASUREMENTS (inches) INDICATOR			
CLASS	PHASE	#1	#2	#3 (20)	
	1	0.24	1.03	0.22	
	2	0.29	1.35	0.29	
	3 Minimum	0.30	1.40	0.30	
30	3 Maximum	0.34	1.53 (R)	0.34	
	4	0.31	1.40	0.30	
	5	0.38	1,68	0.38	
	Final (0.0 psf)	0.20	0.42	0.15	
	1	0.35	1.56	0.34	
	2	0.45	1.94	0.45	
	3 Minimum	0.46	2.07	0.49	
60	3 Maximum	0.56	2.28	0.58	
	4	0.44	1.91	0.45	
	5 OR 1	0.56	2.27	0.58	
	Final (0.0 psf)	0.22	0.59	0.18	
	1	0.47	2.02	0.49	
	2	0.63	2.46	0.66	
	3 Minimum	0.61	2.42	0.64	
90	3 Maximum	0.65	2.50	0.68	
20	4	0.55	2.23	0.57	
15/10.	5	0.74	2.68	0.79	
	Final (0.0 psf)	0.26	0.88	0.24	

Table No. 3
Deflection Measurements – Test Specimen #2

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

VACUUM	UPLIFT	LOAD	SUPPLEMENT MEASUREME INDICATOR	AL DEFLECTION NTS (inches)	LEGALIHE SAN
(psf)	(psf)	(psf)	#1	#2	#3
-63.5	-48.5	-112.0	0.77	2.75	0.81
-78.5	-48.5	-127.0	0.84	2.91	0.90
-93.5	-48.5	-142.0	0.93	3.11	1.01
-108.5	-48.5	-157.0	1.03	3.30	1.12
-123.5	-48.5	-172.0	1.12	3.47	1.22
-138.5	-48.5	-187.0	1.27	3.76	1.42
-153.5	-48.5	-202.0	1.41	4.03	1.65
-168.5	-48.5	-217.0	WELL	Failed	

Table No. 4

Supplemental Deflection Measurements – Test Specimen #2

Version: 03/11/20 Page 16 of 22 RT-R-AMER-Test-2958

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

	T	_		
		DEFLECTION MEASUREMENTS (inches)		
		INDICATOR		all.
CLASS	PHASE	#1	#2	#3 (%)
	1	0.07	0.40	0.08
	2	0.28	0.94	0.29
	3 Minimum	0.31	1.04	0.34
30	3 Maximum	0.35	1.10	0.36
	4	0.31	1.11	0.35
	5	0.39	1,22	0.41
	Final (0.0 psf)	0.18	0.35	0.20
	1	0.36	1.26	0.39
	2	0.50	1.47	0.50
	3 Minimum	0.54	1.63	0.54
60	3 Maximum	0.64	1.77	0.61
	4	0.50	1.61	0.51
	5 OR 1	0.63	1.78	0.61
	Final (0.0 psf)	0.23	0.46	0.24
	1	0.54	1.69	0.55
	2,(51)	0.65	1.88	0.63
	3 Minimum	0.65	1.88	0.63
90	3 Maximum	0.72	1.95	0.67
210.	4	0.64	1.91	0.62
12/10.	5	0.84	2.22	0.77
17	Final (0.0 psf)	0.28	0.65	0.27

Table No. 5
Deflection Measurements – Test Specimen #3

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

VACUUM (psf)	UPLIFT (psf)	LOAD (psf)	SUPPLEMENT MEASUREME INDICATOR #1	AL DEFLECTION NTS (inches)	#3
-63.5	-48.5	-112.0	0.89	2.34	0.81
-78.5	-48.5	-127.0	0.98	2.51	0.88
-93.5	-48.5	-142.0	1.08	2.69	0.96
-108.5	-48.5	-157.0	1.19	2.87	1.04
-123.5	-48.5	-172.0	1.30	3.05	1.12
-138.5	-48.5	-187.0	1.42	3.23	1.20
-153.5	-48.5	-202.0	1.62	3.50	1.31
-168.5	-48.5	-217.0	1.75	3.68	1.40
-183.5	-48.5	-232.0	1.90	4.02	1.59
-348.5	-48.5	-397.00		Failed	

Table No. 6

Supplemental Deflection Measurements – Test Specimen #3

Version: 03/11/20 Page 18 of 22 RT-R-AMER-Test-2958

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

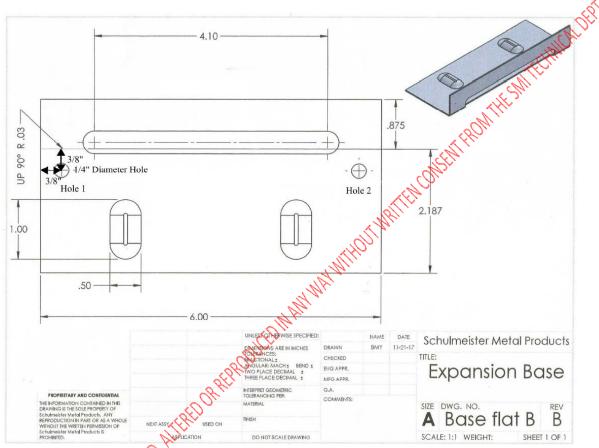
Report No.: L3734.01-450-18 R1

Date: 02/01/21

SECTION 14

DRAWINGS

The test specimen drawings have been reviewed by Intertek B&C and are representative of the test specimen(s) reported herein. Test specimen construction was verified by Intertek B&C per the drawings included in this report. Any deviations are documented herein or on the drawings.


SMI 1.5 MS, whith the state of

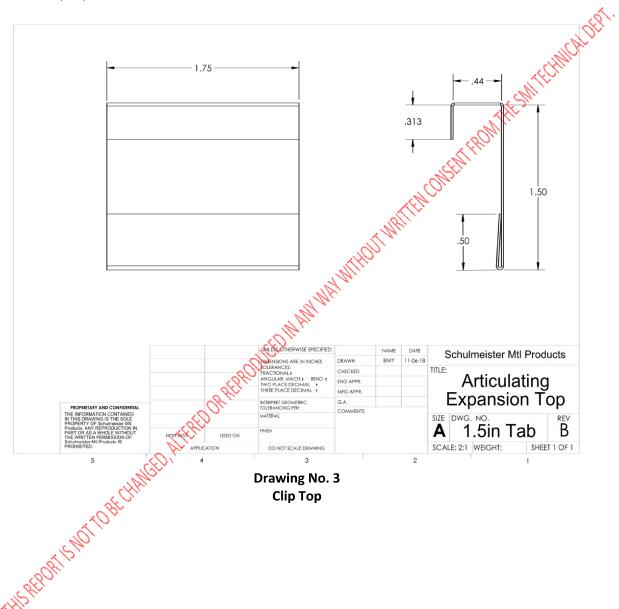
> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

Drawing No. 2 Clip Base



> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

> Telephone: 561-881-0020 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR SHEFFIELD METALS

Report No.: L3734.01-450-18 R1

Date: 02/01/21

SECTION 15

REVISION LOG

REVISION # DATE PAGES REVISION 0 12/03/20 N/A Original Report Issue HEAD PAGES REVISION 1 02/01/21 10 Revised to include tensile test results Revised to include tensile test results	REVISION #	DATE	PAGES	REVISION
1 02/01/21 10 Revised to include tensile test results	0	12/03/20	N/A	Original Report Issue
AS REPORT SHOT TO BE CHANGED ALTERD OR REPRODUCED IN ANY WAY WITHOUT WARTER CONSERVED IN A SHORT TO BE CHANGED ALTERDOR REPRODUCED IN ANY WAY WAY WAY WAY WAY WAY WAY WAY WAY WA	1	02/01/21	10	Revised to include tensile test results
NE PER CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	1 Refishor to 84	02/01/21 CHANGED ALTERED OR	10 REPRODUCED MARI	Revised to include tensile test results
	Skipor			